Sodium valproate inhibits MDA-MB-231 breast cancer cell migration by upregulating NM23H1 expression.

نویسندگان

  • G-F Li
  • T-L Qian
  • G-S Li
  • C-X Yang
  • M Qin
  • J Huang
  • M Sun
  • Y-Q Han
چکیده

Breast cancer is a common cancer in women, with a highly variable course, from inoffensive to lethal. To find a more effective strategy for its treatment, sodium valproate has been tested as an anti-cancer drug; it is the only clinically available histone deacetylase inhibitor. However, data about the effects of sodium valproate on breast cancer are insufficient in both animals and humans; studies have yielded conflicting conclusions. In particular, little is known about the association between expression of the metastasis suppressor Nm23H1 gene and breast cancer. We hypothesized that sodium valproate regulates NM23H1 expression, and affects migration and/or invasion. We found that sodium valproate at concentrations of 0.8-3.2 mM inhibits migration and modulates Nm23H1 gene expression in a concentration-dependent manner. Confluent MDA-MB-231 cells were scratched by a micropipette tip after VPA treatment for 24 h; 24 h later, the scratch was almostly closed in the 0 mM VPA-treated cells, while the 3.2 mM VPA-treated cells migrated the slowest. The cell migration ratio exposed to 0.8, 1.6 and 3.2 mM VPA was about 66.67, 30.67 and 26.67% (P < 0.05). We also found evidence that sodium valproate upregulates NM23H1 expression, which is a clue to its anti-cancer mode of action. The NM23H1 gene expression was relative fold increased determined by Western blotting at 3.2 mM VPA. Collectively, these observations indicate that sodium valproate has potential for use in breast cancer treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE EFFECT OF QUINACRINE ON THE EXPRESSION OF WNT3A GENE IN MDA-MB 231 AND MCF7 BREAST CANCER CELL LINES

Background & Aims: Triple-negative breast cancer cells refer to any breast cancer that does not express the genes for the estrogen, progesterone, and HER2 receptors. The Wnt signaling pathway is important in the development and progression of various types of cancers. Quinacrine, a derivative of 9-aminoacridine, has been shown to inhibit the growth of several types of cancer cells. In this stud...

متن کامل

A Mimic of the Tumor Microenvironment on GPR30 Gene Expression in Breast Cancer

Introduction: The G-protein coupled receptor 30 (GPR30) gene is a member of the G-protein coupled receptor (GPCR) family; involved in breast, endometrial, and ovarian cancers. Many GPCR receptors that are implicated in several types of human cancers are correlated with increased cell proliferation and tumor progression; especially GPR30 gene. Methods: The breast cancer MCF-7 and MDA-MB-231 cel...

متن کامل

Polysaccharide from Sepia esculenta ink and cisplatin inhibit synergistically proliferation and metastasis of triple-negative breast cancer MDA-MB-231 cells

Objective(s): This paper aims to investigate synergistic inhibition of polysaccharide from Sepia esculenta ink (SIP), a newly isolated marine polysaccharide in our laboratory, on breast cancer MDA-MB-231 cells exposed to cisplatin. Materials and Methods: Cell viability of MDA-MB-231 cells was determined by CCK 8 assay. Median-effect concentration was analyzed using Chou-Talalay method that was ...

متن کامل

Metformin Inhibits Tumorigenesis and Tumor Growth of Breast Cancer Cells by Upregulating miR-200c but Downregulating AKT2 Expression

Background: Metformin has been reported to inhibit the growth of various types of cancers, including breast cancer. Yet the mechanisms underlying the anticancer effects of metformin are not fully understood. Growing evidence suggests that metformin's anticancer effects are mediated at least in part by modulating microRNAs, including miR-200c, which has a tumor suppressive role in breast cancer....

متن کامل

Interfering with CXCR4 expression inhibits proliferation, adhesion and migration of breast cancer MDA-MB-231 cells

To investigate the effect and mechanism of the CXC chemokine receptor 4 (CXCR4) in the proliferation and migration of breast cancer, a short-hairpin RNA (shRNA) eukaryotic expression vector targeting CXCR4 was constructed, and the impact of such on the proliferation, adhesion and migration of human breast cancer MDA-MB-231 cells was observed. The fragments of CXCR4-shRNA were synthesized and cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2012